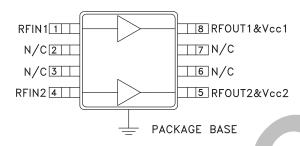


HMC471MS8G / 471MS8GE

v01.0605


SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Typical Applications

The HMC471MS8G / HMC471MS8GE is a dual RF/IF gain block & LO or PA driver:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Functional Diagram

Features

P1dB Output Power: +20 dBm

Gain: 20 dB

Output IP3: +34 dBm

Supply (Vs): +6V to +12V

14.9 mm² Ultra Small 8 Lead MSOP

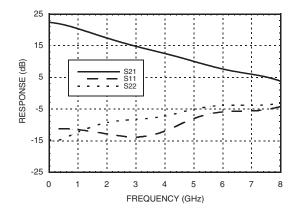
General Description

The HMC471MS8G & HMC471MS8GE are SiGe HBT Dual Channel Gain Block MMIC SMT amplifiers covering DC to 5 GHz. These versatile products contain two gain blocks, packaged in a single 8 lead plastic MSOP, for use as either separate cascadable 50 Ohm RF/IF gain stages, LO or PA drivers or with both amplifiers combined utilizing external 90° hybrids to create a high linearity driver amplifier. Each amplifier in the HMC471MS8G(E) offers 20 dB of gain, +20 dBm P1dB with a +34 dBm output IP3 at 850 MHz while requiring only 80 mA from a single positive supply. The combined dual amplifier circuit delivers up to +21 dBm P1dB with +36 dBm OIP3 for specific application bands through 4 GHz.

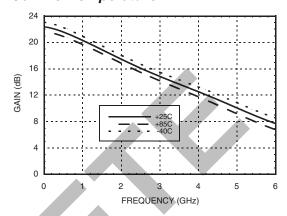
Electrical Specifications, Vs=8.0 V, Rbias= 39 Ohm, $T_{\Delta}=+25^{\circ} \text{ C}$

Parameter		Min.	Тур.	Max.	Units
	DC - 1.0 GHz	18.5	21		dB
	1.0 - 2.0 GHz	15.5	17.5		dB
Gain	2.0 - 3.0 GHz	13	15		dB
	3.0 - 4.0 GHz	10.5	12.5		dB
	4.0 - 5.0 GHz	8	10		dB
Gain Variation Over Temperature	DC - 5 GHz		0.008	0.012	dB/ °C
	DC - 2.0 GHz		12		dB
Input Return Loss	2.0 - 4.0 GHz		14		dB
	4.0 - 5.0 GHz		8		dB
	DC - 1.0 GHz		13		dB
Output Return Loss	1.0 - 2.0 GHz		9		dB
Output Hetuin Loss	2.0 - 4.0 GHz		7		dB
	4.0 - 5.0 GHz		5		dB
Reverse Isolation	DC - 5 GHz		20		dB
	0.5 - 1.0 GHz	16	19		dBm
	1.0 - 2.0 GHz	14	17		dBm
Output Power for 1 dB Compression (P1dB)	2.0 - 3.0 GHz	11	14		dBm
	3.0 - 4.0 GHz	9	12		dBm
	4.0 - 5.0 GHz	7	10		
	0.5 - 1.0 GHz		34		dBm
Output Third Order Intercept (IP3)	1.0 - 2.0 GHz		32		dBm
(Pout= 0 dBm per tone, 1 MHz spacing)	2.0 - 3.0 GHz		27		dBm
(1 out o ability of torio, 1 with 2 opasing)	3.0 - 4.0 GHz		25		dBm
	4.0 - 5.0 GHz		22		dBm
Noise Figure	DC - 4 GHz		3.25		dB
Troibe Figure	4.0 - 5.0 GHz		4.0		dB
Supply Current (Icq)	<u>-</u>		80		mA

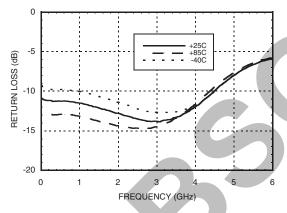
Note: Data taken with broadband bias tee on device output. All specifications refer to a single amplifier.

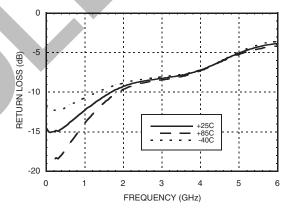


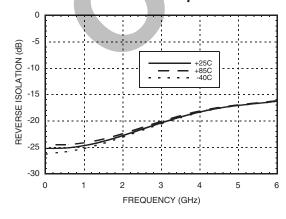
v01.0605

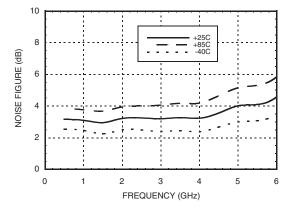


SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Broadband Gain & Return Loss


Gain vs. Temperature

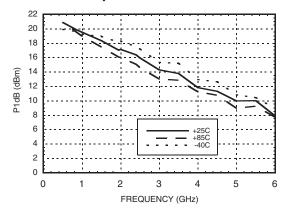

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature

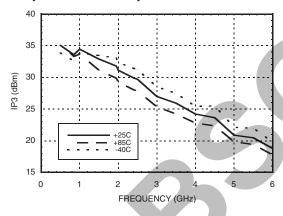
Noise Figure vs. Temperature

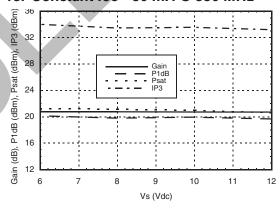
Data shown is of a single amplifier.

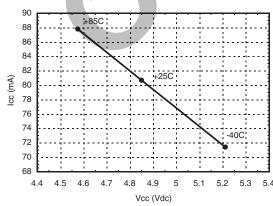


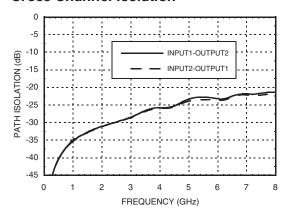
v01.0605

SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


P1dB vs. Temperature


Psat vs. Temperature

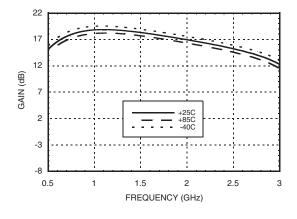

Output IP3 vs. Temperature


Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 80 mA @ 850 MHz

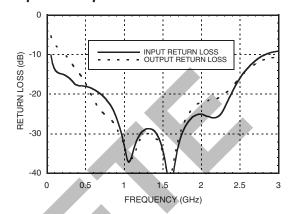
Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 51 Ohms

Cross Channel Isolation

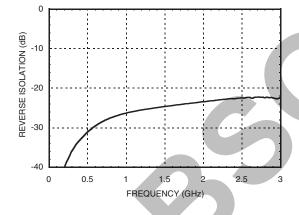
Data shown is of a single amplifier.

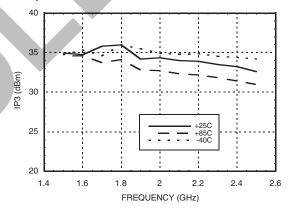


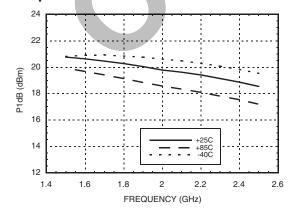
v01.0605

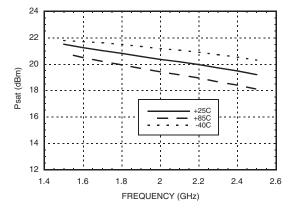


SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Gain*


Input & Output Return Loss *


Reverse Isolation*


Output IP3*

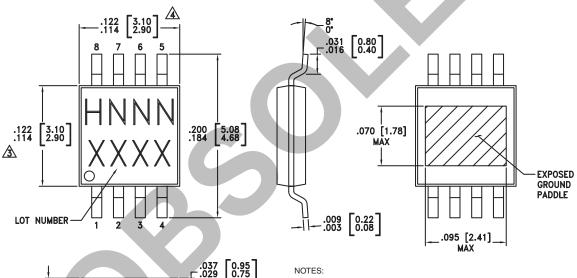
Output P1dB*

Output Psat*

^{*} Measurements shown are of both channels with 1.5 - 2.5 GHz 90° splitter/combiners on input & output (see application circuit for balanced operation).

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SiGe HBT DUAL CHANNEL GAIN **BLOCK MMIC AMPLIFIER, DC - 5 GHz**


Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6.0 Vdc	
Collector Bias Current (Icc)	100 mA	
RF Input Power (RFIN)(Vcc = +4.2 Vdc)	+14 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 32.6 mW/°C above 85 °C) 2.12 W		
Thermal Resistance (junction to ground paddle)	30.7 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

v01.0605

Outline Drawing

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

.043 [1.10]

MAX

.0256 [0.65] TYP

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC471MS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H471 XXXX	
HMC471MS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H471 XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

0.13

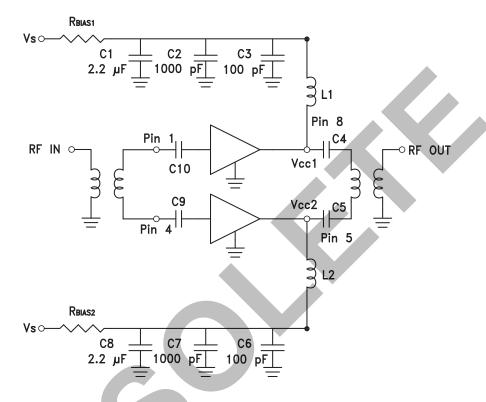
HMC471MS8G / 471MS8GE

v01.0605

SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN1	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT1
8	RFOUT1	RF output and DC Bias (Vcc1) for the output stage.	
2, 3, 6, 7	N/C	No connection. These pins may be connected to RF ground. Performance will not be affected.	
4	RFIN2	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT2
5	RFOUT2	RF output and DC Bias (Vcc2) for the output stage.	
Ground Paddle	GND	Ground paddle must be connected to RF/DC ground.	GND =



SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Application Circuit for Balanced Operation

v01.0605

Note:

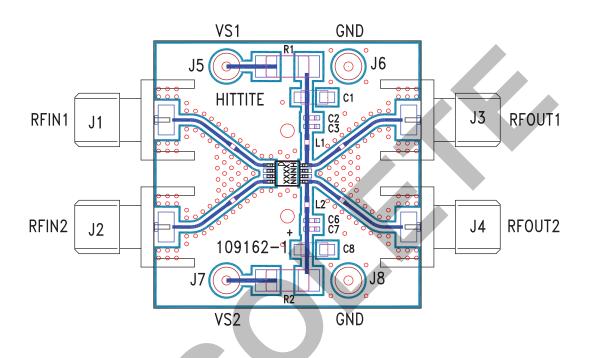
- External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Bias Resistor Values for Icc= 75 mA, Rbias= (Vs - Vcc) / Icc

Supply Voltage (Vs)	6V	8V	10V	12V
RBIAS VALUE	11 Ω	39 Ω	62 Ω	91 Ω
RBIAS POWER RATING	1/4 W	1/2 W	1/2 W	1 W

Recommended Component Values for Key Application Frequencies

Component	Frequency (MHz)						
Component	50	900	1900	2200	2400	3500	5000
L1, L2	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	6.8 nH
C4, C5, C9, C10	0.01 μF	100 pF					


HMC471MS8G / 471MS8GE

v01.0605

SiGe HBT DUAL CHANNEL GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 109185 [1]

Item	Description		
J1 - J4	PCB Mount SMA Connector		
J5 - J8	DC Pins		
L1, L2	Inductor, 0402 Pkg.		
C1, C8	2.2 µF Capacitor, Tantalum		
C2, C7	1000 pF Capacitor, 0402 Pkg.		
C3, C6	100 pF Capacitor, 0402 Pkg.		
C4, C5, C9, C10	Capacitor, 0402 Pkg.		
R1, R2	Resistor, 2010 Pkg.		
U1	HMC471MS8G / HMC471MS8GE		
PCB [2]	109162 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350